Радиометрические методы поисков. Полевые радиометрические методы Радиометрические методы анализа применение

Атомы химических элементов состоят из положительно заряженного ядра и отрицательно заряженных электронов оболочки. Ядро состоит из нуклонов, к которым относятся нейтроны и протоны (рис. 57). Число протонов определяет номер элемента, а сумма числа протонов и нейтронов равна массовому числу. Элементы, атомы которых имеют одинаковое число протонов, но различные массовые числа называются изотопами данного химического элемента.

Рис. 57.

Явление естественной радиоактивности представляет собой процесс самопроизвольного превращения неустойчивых ядер атомов некоторых элементов земной коры в ядра других элементов. Процесс самопроизвольного распада сопровождается испусканием альфа -, бета-частиц, гамма-квантов. Известно более 230 радиоактивных изотопов различных элементов, называемых радиоактивными нуклидами (радионуклидами), но наиболее важное значение для радиометрических исследований имеют изотопы калия, тория и урана.

Большинство радиоактивных элементов образуют семейства, в которых каждый элемент возникает из предыдущего, в результате б - и в - распада, цепочка распадов продолжается до тех пор, пока не образуется устойчивое атомное ядро. Так в процессе превращения 238 U в стабильный свинец образуется 14 промежуточных элементов (рис. 58).

При работе с естественными и искусственными радионуклидами определяется их масса, концентрация, доза и мощность дозы излучения. Массу долгоживущих радиоактивных нуклидов определяют в кг, г, мг .


Рис. 58. Радиоактивный рад 238 U (Кунщиков Б.К., Кунщикова М.К., 1976)

В СИ единицей для определения активности радионуклидов является беккерель (Бк) - это активность любого нуклида, в котором за 1 секунду распадается 1 ядро. Единица названа в честь французского физика, лауреата Нобелевской премии Антуана Анри Беккереля.

Очень часто на практике используют несистемную единицу активности - Кюри (Ки) - 3,7x10 10 Бк (расп/сек). Эта единица возникла исторически: такой активностью обладает 1 грамм радия-226 в равновесии с дочерними продуктами распада. Именно с радием-226 долгие годы работали лауреаты Нобелевской премии французские учёные супруги Пьер Кюри и Мария Склодовская-Кюри.

Мощность дозы, т.е. облучение за единицу времени, в радиометрии выражают в амперах на килограмм (А/кг), микрорентгенах в час (мкР/ч).

Радиоактивность горных пород и руд тем выше, чем больше концентрация в них естественных радиоактивных элементов. Породообразующие минералы можно разделить на четыре группы в зависимости от радиоактивности:

  • 1. Группа минералов очень высокой радиоактивности - это минералы урана (первичные - уранит, настуран, вторичные - карбонаты, фосфаты, сульфаты уранила и др,) тория (торианит, торит, монацит и др.);
  • 2. Группа минералов высокой радиоактивности - минералы, содержащие калий-40 (полевые шпаты, калийные соли);
  • 3. Группа минералов средней радиоактивности - магнетит, лимонит, сульфиды и др.;
  • 4. Группа минералов низкой радиоактивности - кварц, кальцит, гипс, каменная соль и др.

Соответственно радиоактивность горных пород определяется радиоактивностью породообразующих минералов и изменяется в очень широких пределах в зависимости от качественного и количественного состава минералов, условий образования, возраста и степени метаморфизма. Концентрация радиоактивных элементов в магматических породах возрастает от ультраосновных к кислым породам.

Основой радиометрических методов является выявление и изучение естественной радиоактивности минералов и горных пород. Радиометрические методы можно разделить на полевые и лабораторные методы.

Все полевые поисковые радиометрические методы являются геохимическими, так как изучают геохимические поля радиоактивных элементов с целью выявления их ореолов рассеяния. В лабораторных условиях радиометрические методы применяются для определения содержания радиоактивных элементов в минералах, горных породах, воде и газах.

С помощью радиометрических методов можно решить следующие задачи:

  • - геологическое картирование, которое основано на различии радиоактивности разных типов пород, а также повышение радиоактивности пород в зоне тектонических нарушений;
  • - литологическое расчленение горных пород. В данном случае очень важен г-метод исследования скважин в комплексе с другими геофизическими методами в случае, когда бурение скважин осуществляется без отбора керна или выход керна мал;
  • - радиометрические методы широко применяются во всех видах поисков и разведки полезных ископаемых генетически и парагенетически связанных с ураном и торием. Например, к месторождениям редкоземельных элементов, боксита, олова, бериллия приурочено повышенное содержание тория; к месторождениям ниобия, тантала, вольфрама, молибдена - урана; к некоторым полиметаллическим месторождениям - калия;
  • - разведка, определение глубины и мощности рудных тел, а также оконтуривание границ залегания. Максимальное значение радиоактивности элементов в земной коре приурочено к верхней части гранитной геосферы, мощностью 25-30 км;
  • - определение абсолютного возраста горных пород, основанного на том, что процесс радиоактивного распада протекает с постоянной скоростью, не зависящей от окружающих физико-химических условий.

Основными методами радиометрии являются гамма-съемка, при которой регистрируют интенсивность гамма-излучения, и в меньшей степени используется эманационная съемка, основанная на измерении концентрации эманации в почве и воздухе (т.е. измеряется излучение радиоактивных газов).

Радиоактивные излучения могут быть зарегистрированы двумя методами: ионизационными и импульсными. В ионизационном методе в качестве регистрирующих приборов используются ионизационные камеры, а в импульсном - счетчики излучения.

В ионизационных камерах измеряют интенсивность б - излучения, имеющего большую ионизационную способность, реже в - излучение. С помощью счетчиков регистрируют все виды излучения.

В ионизационной камере (рис. 59) находятся газ и два электрода, к которым подводят напряжение в несколько сот вольт. Под действием альфа-, бета-лучей или вторичных заряженных частиц, возникающих при поглощении нейтронов, газ ионизируется, а получающиеся свободные электроны и ионы движутся к электродам. В результате в цепи возникает ток. Измеряя его или разность потенциалов, можно определить интенсивность излучений, вызывающих ионизацию.

Рис. 59. Схема ионизационной камеры: 1 - внутренняя поверхность и сердечник камеры (положительный электрод); 2 - металлическое кольцо (отрицательный электрод); 3 - днище камеры; 4 - янтарный изолятор; 5 - охранное кольцо

В газоразрядных счетчиках (счетчик Гейгера - Мюллера), в баллоне под пониженным давлением находится инертный газ (обычно аргон для измерения гамма-лучей или гелий для определения потока нейтронов) и два электрода под высоким напряжением (до 1000 В) (рис. 60).

Рис. 60. Схема стеклянного счётчика Гейгера - Мюллера(http://bse.sci-lib.com): 1 - герметически запаянная стеклянная трубка; 2 - катод (тонкий слой меди на трубке из нержавеющей стали); 3 - вывод катода; 4 - анод (тонкая натянутая нить)

При появлении хотя бы одной пары ионов возникает краткий разряд. При облучении баллона гамма-квантами возникают вторичные заряженные частицы (ионы и электроны) и в нем наблюдается система разрядов в виде импульсов тока, которые можно зафиксировать.

Сцинтилляционный счетчик состоит из сцинтиллятора (неорганические или органические кристаллы, жидкие и газообразные), способного под действием гамма-квантов испускать вспышки света (рис. 61). Кванты света, попадая на фотокатод фотоумножителя, выбивают из него электроны. За счет вторичной эмиссии и наличия ряда электродов, находящихся под все большим напряжением, в фотоумножителе возникает лавинообразный, увеличивающийся поток электронов. В результате на аноде собирается в 10 5- 10 10 раз больше электронов, чем было выбито из фотокатода, а в цепи возникает электрический ток. Сцинтилляционный счетчик обеспечивает гораздо большую эффективность регистрации г-квантов (до 30-50 % и более), чем газоразрядные, и даёт возможность изучения спектрального состава излучения. У сцинтилляционных счётчиков более низкий уровень их собственного и космического фона.

Рис. 61.

Полевая радиометрическая аппаратура предназначена для измерения б -, в - и г- активности пород в процессе пешеходной, автомобильной и воздушной съемок, для обнаружения и определения концентраций радиоактивных эманаций в горных выработках, почвенном воздухе и воде. По типу применяемых счетчиков приборы подразделяются на газоразрядные и сцинтилляционные. спектральный радиометрический элементный минерал

Для гамма-съемки используют разного рода полевые радиометры со стрелочным индикатором на выходе. С помощью наушников можно осуществлять звуковую индикацию импульсов. Прибор состоит из выносного зонда, пульта управления и питания от сухих анодных батарей. Для того, чтобы по шкале измерительного микроамперметра можно было определить интенсивность гамма-излучения, радиометры градуируют. С этой целью используют образцовый излучатель радия, помещаемый в коллиматор для создания узкого пучка гамма-излучения. В этих приборах, кроме сцинтилляционных счетчиков, имеются дискриминаторы, с помощью которых определяют интенсивности гамма-лучей разного энергетического уровня.

Для изучения концентрации радона в подпочвенном воздухе используют эманометры, которые состоят из пробоотборника, поршневого насоса, сцинтилляционной камеры, измерительного пульта и соединительных резиновых трубок.

Определение концентраций эманации основано на регистрации б - частиц, излучаемых радиоактивными элементами пробы с помощью открытого сцинтилляционного детектора. Прибор питается от сухих анодных батарей.

Радиометрические методы по виду используемых излучений разделяют на б-, в-, г-методы.

Альфа - излучение представляет собой поток положительно заряженных частиц (ядер атомов гелия), энергия которых на длине пути около 10 см в воздухе и долей миллиметров в породах тратится на ионизацию и нагревание окружающей среды, поэтому проникающая способность у них очень мала. Т.е. б -распад - это выбрасывание (испускание) из ядра атома a-частицы, а б -частица - это 2 протона и 2 нейтрона, то есть ядро атома гелия с массой 4 единицы и зарядом +2. Скорость б - частицы при вылете из ядра от 12 до 20 тыс. км/сек. Так, например, при б -распаде урана всегда образуется торий, при a-распаде тория - радий, при распаде радия - радон, затем полоний и наконец - свинец. При этом из конкретного изотопа урана-238 образуется торий-234 (рис. 62), затем радий-230, радон-226 и т. д.

Рис. 62.

б-метод используется с целью измерения б-излучения и определения концентрации радиоактивных элементов (U, 222 Rn, 226 Ra и др.) в радиоактивных рудах и породах. Использование б-метода является сложной задачей из-за специфики б-частиц.

Для измерения б-излучения используются ячеистые сцинтилляционные системы, пропорциональные газопроточные счетчики и сцинтилляционные жидкостные счетчики в совокупности с предусилителем, усилителем, источником высокого напряжения, счетными и записывающими устройствами.

Бета-излучение представляет собой поток электронов (в - - излучение, или, чаще всего, просто в - излучение) или позитронов (в + - излучение), возникающих при радиоактивном распаде (рис. 63). В настоящее время известно около 900 в - радиоактивных изотопов. Масса б-частиц в несколько десятков тысяч раз меньше массы б-частиц. В зависимости от природы источника в - излучений скорость этих частиц может лежать в пределах 0,3-0,99 скорости света. Максимальное значение для в - излучения равно 4 миллиона электрон-вольт (МэВ). В - частицы вызывают в основном ионизацию окружающей среды, т.е. образование положительных ионов и свободных электронов вследствие вырывания электронов из внешних оболочек атомов.

Рис. 63.

Полевые методы с использованием - метода предназначены для оконтуривания ореолов рассеяния радиоактивных элементов в поверхностном слое горных пород или почв. Измерение в - излучения производятся ионизационными методами, однако чаще всего его измеряют импульсным методом на лабораторных радиометрах. В лабораторной условиях - метод является основным методом установления содержания урана в урановых рудах. Радиоактивность пробы руды по - лучам сравнивается с радиоактивностью эталона в одинаковых условиях измерения.

в - метод может использоваться в комплексе с г - методом. Комплексный в - г - метод основан на различии вкладов каждого компонента в измеряемую активность пробы.

Гамма-излучение представляет собой поток электромагнитного излучения очень высокой частоты (рис. 64). Хоть они рассеиваются и поглощаются окружающей средой, но благодаря своей электрической нейтральности отличаются более высокой проникающей способностью (сотни метров в воздухе и до метра в горных породах). Количество и концентрация долгоживущих элементов (U, Th, 40К) в горной породе определяются их массой и процентным содержанием (или эквивалентным содержанием урана).

Рис. 64.

Существуют различные приборы с разной чувствительностью к г - излучению. Выбор оптимального прибора зависит от условий проведения г - съемки и требований, предъявляемых к ее результатам. Основная масса приборов производит измерения мощности экспозиционной дозы гамма излучения от 0,1 до 10000 мкр./ч в энергетическом диапазоне от 80 кэВ до 2,6 МэВ. Лабораторный г - метод применяется для установления содержания в пробах г - излучающих радиоактивных элементов. Измерения г - излучения проб производятся импульсным методом или со сцинтилляционными счетчиками. Применение этих счетчиков дает возможность производить г - измерения с высоким уровнем чувствительности. Далее следует сравнение активности исследуемой пробы с активностью эталона при одинаковых геометрических условиях c вытекающими расчетами.

Эти методы основаны на различии в интенсивности излучения, поглощения или отражения рентгеновского и радиоактивного излучений компонентами анализируемого вещества. Определение состава и концентрации производится по спектрам собственного излучения вещества, по поглощению радиоактивного излучения, по спектрам вторичного излучения, возникающего при взаимодействии нейтронов, г - и в -излучений с веществом. Радиоактивные методы широко применяются для экспертного анализа многокомпонентных сред, для анализа бинарных жидкостей, для определения концентраций тяжелых элементов в растворах, а также для измерения влажности продуктов, грунтов, торфов, строительных материалов, для измерения примесей в сверхчистых веществах.

В настоящее время существуют следующие методы регистрации ионизирующих излучений: ионизационный; сцинтиляционный; люминесцентный; фотографический; химический.

Ионизационный метод

Ионизационный метод основан на измерении ионизации в газе, заполняющем регистрационный прибор. Ионизация газа вызывается электронами, освобождающимися под действием фотонного излучения.

В ионизационной бесстеночной камере объемом V образуется q пар ионов на единицу объема, и если они все достигнут измерительных электродов, на которые подана разность потенциалов, то возникает ток насыщения (i):

где е - заряд иона.

Мощность экспозиционной дозы измеряют с помощью ионизационной камеры, ионизационный объем которой окружен твердой стенкой.

Соотношение между мощностью экспозиционной дозы и током насыщения в камере высчитывают следующим образом:

где р - мощность экспозиционной дозы, сГр/с;

а - коэффициент, определяемый по заряду, образующемуся в 1 см 3 камеры при р=1сГр/с;

и - массовый коэффициент поглощения фотонов в воздухе и стенках камеры; - средняя энергия ионообразования, необходимая для образования пары ионов в воздухе (=33,85эВ).

Чувствительность ионизационной камеры по мощности экспозиционной дозы определяют соотношением i/р.

Существенным недостатком ионизационных камер является их низкая чувствительность. Для повышения чувствительности камеры увеличивают ее объем, подбирают специальные материалы стенок и т.д. наиболее чувствительным детектором в дозиметрии фотонового излучения является газоразрядный счетчик. Число разрядов в счетчике N а за единицу времени и на единицу площади его поверхности составляет.

Методы основаны на измерении радиационного спектра излучения исследуемого образца как по характеру излучения, так и по его интенсивности. Метод позволяет определять характер излучения, энергию и интенсивность излучения.

Выделяют 2 метода в радиометрии: прямой и активационный.

Прямой метод . Если природный образец содержит в своем составе примесь радиоактивного вещества, то концентрацию этой примеси определяют, непосредственно измеряя интенсивность радиоактивного излучения. Среди обычных природных веществ такие объекты крайне редки, потому что большинство элементов периодической системы представляют собой смеси стабильных изотопов.

Чтобы исследовать систему, представляющую собой в естественных условиях смесь стабильных изотопов, прибегают к ее радиохимической активации, т.е. вызывают в ней реакции радиоактивного распада. Активационный метод заключается в облучении вещества, при обычных условиях не имеющего радиоактивного излучения, путем воздействия на образец мощным источником радиоактивного излучения. Для этого исследуемый образец помещают в реактор, представляющий собой свинцовый контейнер с ампулой, заполненной радиоактивным веществом, Например Sr 90 (источник γ-излучения). В некоторых случаях в качестве источника с небольшой энергией β-излучения используют изотоп Гидрогена – тритий. Вызванная в результате облучения в исследуемом образце, радиохимическая реакция исследуется, т.е. измеряется характер излучения и его интенсивность.

Виды излучения: α-частицы – это дважды ионизированные ионы Гелия Не 2+ ; β - – поток электронов; β + – поток позитронов; γ – электромагнитные колебания с длиной волны меньше рентгеновского; p – поток протонов, ионизированные атомы Гидрогена; n – поток нейтронов, частиц с массой = 1 и зарядом 0 (количество нейтронов определяют: n = A-z); мезоны …

Излучение можно характеризовать по величине энергии в электрон-вольтах (эВ).

эВ – это такая энергия, которой обладает частица, имеющая элементарный заряд в поле напряженностью 1В/см 2 . Чем больше энергия частицы, тем больше ее проникающая способность в материал.

Период полураспада характеризует длительность жизни радиоактивного изотопа.

Это время, за которое распадается половина радиоактивных изотопов.

Изотопы – нуклиды, имеющие одинаковый заряд, но различную массу, например, и
.

Изобары – нуклиды с одинаковым массовым числом.

Изотоны – это нуклиды с одинаковым числом нейтронов.

Интенсивность излучения – это число радиоактивных распадов в единицу времени. За единицу интенсивности принято 1 кюри – это составляет 3,7·10 10 распадов в секунду. Такую радиоактивность имеет 1 г Радия. В аналитической практике пользуются объектами, излучение которых не превышает сотни микрокюри.

В качестве приборов для измерения радиоактивности применяют счетчики Гейгера-Мюллера

(β - счетчики) .R

Счетчик представляет собой трубку из алюминиевой фольги, заполненную молекулами газообразного органичес­кого вещества. Корпус подключен к отрицательному полюсу источника электрического тока. В центре трубки находится металлическая нить, подключенная к положительному полюсу источника электрического тока высокого напряжения.

Процессы в счетчике. Электроны, пронизывая стенку счетчика, попадают в положительное цилиндрическое поле, создаваемое нитью. Напряженность этого поля увеличивается по мере приближения электронов к центру. Таким образом, электрон ускоряется и в близи нити приобретает такую энергию, которая способна ионизировать молекулы газообразного вещества. В результате, к нити подходят не электроны, а ионизированная ими лавина ионов. При ее разряде во внешней цепи возникает импульс электрического тока. В современных радиометрах вместо гальванометра, регистрирующего этот импульс, используются счетчики импульса – механические или электрические.

Таким образом, схема радиометра для измерения β-импульсов включает β-счетчик (детектор), усилитель и пересчетное устройство, которое считает число импульсов.

Радиометрические методы являются важной частью комплекса поиско­во-разведочных методов на руды радиоактивных элементов, а также полез­ных ископаемых, находящихся в парагенетической связи с радиоактивными элементами (фосфориты, редкие и редкоземельные элементы, осадочные руды ванадия, молибдена и др.).

Радиометрические методы исследования горных пород в усло­виях их естественного залегания можно разделить на две группы:

1. Полевые радиометрические методы (радиометрическая съем­ка), применя­емые для приближенной оценки радиоактивности горных пород;

2. Методы радиометрического опробования, позволяющие более точно опре­делять радиоактивность горных пород в условиях их естественного залега­ния (в скважинах, шурфах, обнажениях и т. п.)

В основе радиометрических методов лежит обнаружение раз­личных поисковых признаков в виде коренных выходов руд и орео­лов рассеяния вокруг рудного тела.

Рассмотрим кратко классификацию ореолов рассеяния, их формирова­ние и важнейшие особенности. Различают открытые ореолы, выходящие на дневную поверхность, и закрытые, разви­вающиеся лишь на некоторой глу­бине от поверхности.

По генети­ческим признакам различают:

1. Первичные (эндогенные) ореолы, образовавшиеся одновременно с форми­ро­ва­нием рудного тела.

2. Вторичные ореолы, образующиеся при пре­образовании руд и первичных ореолов в приповерхностных частях геологического разреза.

Элементный состав первичных ореолов близок к составу самих руд. Их формы подобны формам рудных тел, а размеры значительно превышают раз­меры залежи, распростра­няясь над крутопадающими телами до 100-200 м и более, а в сто­роны от нее до нескольких десятков метров.

Вторичные ореолы могут образовываться в резуль­тате переноса радио­активного вещества и элементов-спутников в твердой, жидкой или газообраз­ной форме. Эти ореолы можно классифицировать по виду вещества, содержа­щего радиоактивные элементы.

Механические ореолы - это область вокруг руд­ного тела, покрытая ру­д­­ными обломками, образовавшимися при физическом выветривании и устойчивыми в поверхностных усло­виях. Образование ме­ханических ореолов урана возможно также за счет устойчивых вторичных скоплений урансодер­жа­щих гидроокислов железа, марганца, глинистых минералов или органи­че­с­ких соединений.

Водные ореолы образуются за счет растворения урана и радия в подзе­мных водах, омывающих рудное тело, и вы­носа их во вмещающие породы.

Солевые ореолы образуются за счет выпадения растворенного в воде урана при взаимодействии вод с вмещающими горными породами или при испарении воды. Солевые ореолы имеют более низкую концентрацию, чем механи­ческие, но гораздо большие размеры (до многих десятков метров, считая от границ залежи). На образование солевых ореолов большое влияние оказывают режим приповерхностных почвенно-грунтовых вод и клима­тичес­кие условия.

Рассеяние газообразных продуктов распада вокруг рудного тела или же вокруг механического и солевого ореолов приводит к образованию газовых (эманационных) ореолов.

Отдельные полевые радиометрические методы поисков на­правлены на обнаружение поисковых признаков, связанных с различными ореолами рас­сеяния радиоактивных элементов.

Радиометрическими методами поисков иногда называют методы, осно­ва­н­ные на изучении радиацион­ных ореолов. Вследствие распространенности закрытых ореолов важной характеристикой полевых (поисковых) методов является их глу­бинность, т. е. максимальная мощность неактивных отложе­ний, перекрывающих рудное тело или ореол рассеяния, при которой возмож­но обнаружение последних. Для повышения надежности поисков радиоме­три­че­ская съемка проводится в комплексе с другими геофизическими, геоло­гическими, гидрохимическими и геохимическими исследованиями. Роль ме­тодов общей геофизики (электро-, магнито-, гравиразведка) осо­бенно велика при поисках месторождений, не имеющих выхода на дневную поверхность. Однако ведущее место при этом остается за радиометрическими методами, среди которых основными являются авиационный, пешеходный и автомо­бильный гамма-методы.

Пешеходный гамма-метод . При поисках месторождений радиоак­тив­ных элементов и со­путствующих им полезных ископаемых применяется пешеходный гамма-метод (гамма-съемка). Широкое применение метода обус­ловлено:

1. Простотой методики, портативной, достаточно чувстви­тельной, простой в обращении аппаратуры;

2. Высокой результа­тивностью и относительно небольшой стоимостью съемки;

3. Воз­можностью применения в любых геоморфологических и климати­чес­ких условиях, включая горные и иные районы, недоступные для авиацион­ных и автомобильных гамма-методов.

В зависимости от задач выделяют рекогносцировочную, маршрутную и пло­щадную съемки.

Глубинность гамма-метода. Для ее оценки рассчитаем поток у-квантов от бесконечного полупростран­ства, перекрытого неактивными наносами мощностью h. Учитывая приближенный характер расчетов, будем исходить из следующей упрощенной модели, в которой необходимо рассчитать поток γ-квантов от бесконечного по простиранию пласта, перекрытого неактивными наносами мощностью h. γ-излучение каждого элемен­тарного объема dV представляется в виде шести пучков, параллельных осям координат и имеющих интенсивность (I 0 /6)*dV, где I 0 – интенсивность γ-излучения элементарного объема. Поток γ-излучения на поверхности земли от тонкого активного слоя толщиной dz, лежащего на глубине z от подошвы наносов, равен:

где μ н и μ п – эффективные коэффициенты поглощения γ-квантов в наносах и в пласте.

Поток излучения от всего полупространства:

где Ф γ0 = I 0 /(6μ п) – поток излучения при нулевой мощности наносов.

За глубинность метода принимается мощность наносов hmax, осла­бляющая интенсивность излучения в 20 раз.

В среднем для наносов μ н ≈ 0.07 см -1 , отсюда h max ≈ 45 см.

Дальнейшее увеличение глубины исследования возможно лишь за счет развития ореолов рассеяния над активными объектами.

Методика проведения пешеходной съемки . По данным рекогносци­ро­вки, пред­шествующей проведению поисков, уточняются природные условия ведения работ, мощность и характер рыхлых отложений, условия формирова­ния в них ореолов рассеяния, нормальные значения радиоактивности отде­ль­ных типов горных пород. Выделяются наиболее перспективные по геоло­ги­ческим данным участки, намечаются маршруты, обычно в крест простирания геологических структур, зон тектонических нарушений, контролирующих оруденения.

Густота точек наблюдения намечается, исходя из масштаба поисков и сложности геологического строения. На участках простого строения с небо­ль­шим изменением радиоактивности по маршруту расстояние между точками наблюдения достигает 20 м при масштабе съемки 1:10 000 и 40 - 50 м при более мелком масштабе съемки. В пределах зон тектонических нару­шений, на участках частой смены пород и при больших колебаниях радиоак­тивности это расстояние уменьшается вдвое.

Пешеходную гамма-съемку по маршрутам проводят путем непрерыв­ного прослушивания излучения пород с помощью телефона и отсчета показа­ний по стрелочному прибору радио­метра в отдельных точках. Оператор мед­ленно передвигается (скорость 1-2 км/ч) по маршруту, держа выносной датчик на высоте 5-10 см от поверхности земли. На намеченных для на­блюдения точках датчик прикладывается к обследуемой поверх­ности. Отсчет записывается в мкР/ч или иногда в делениях шкалы. Кроме измерений по маршруту оператор отклоняется от него в полосе шириной до 100 м для обследования имеющихся там горных выработок, обнажений пород, крупных валунов, осыпей и т. п.

При обнаружении на маршруте точки с повышенным γ-излучением про­водится более тщательное обследование окружающей зоны. После нахо­ж­дения точки с максимальным в этой зоне γ-излучением проводится изме­ре­ние γ-излучения в закопушах с целью обнаружения высокоактивного образ­ца. Аномальные точки отмечаются на местности репером. Для определения размера аномалии проводят дополнительные профили, параллельные мар­шру­ту (основному профилю). На поисковом этапе параллельно проводят геологические наблюдения, отбирают образцы пород, пробы воды, растений, донных осадков для после­дующего лабораторного изучения.

Разновидностью пешеходной гамма-съемки является шпуровая гамма-съемка. Она проводится на площадях, где рудные тела или их ореолы пере­крыты рыхлыми неактивными отложениями мощностью 1-3 м и более и недоступны для обычной гамма-съемки, а применение более глубинных методов (эманационного и др.) нецелесообразно (обводненность отложений, выход на поверх­ность непроницаемых для эманации пород и т. д.). Изме­ря­ют γ-излучения в шпуре (мелкой скважине) через каждые 10-20 см с помощью радиометров с телескопическим зондом.

. Этот этап работ включает:

1. Перевод показаний, зарегистрированных в делениях шкалы, в мкР/ч (с помощью эталонировочного графика или переводной таблицы), и вычита­ние натурального (при измерениях на поверх­ности) или остаточного фона (при измерениях в шпурах).

2. Нанесение на радиометрическую карту результатов измерений, включая радиоактивность обнажений, горных выработок и водопунктов.

3. Графическое изображение результатов съемки в виде карты, профилей инте­н­сивности излучения, карты изолиний интенсивности γ-излучения.

4. Геологическая интерпретация результатов: изучение нор­мального рас­пре­деления радиоактивных элементов в различных комплексах пород; выявление участков повышенной активности среди однотипных пород с целью проведения на этих участках детальных исследований; выявление локальных аномалий γ-поля и их перспективная оценка.

За аномалию принимают превышение активности над средним фоном пород более чем на утроенную величину среднеквадратического отклонения нормального фона. Аномалии γ-поля делят на три группы:

1. Рудные аномалии, связанные с рудными ско­плениями радиоактивных элементов или ореолами их рассеяния. Подразделяются на урановые, уран-ториевые и ториевые.

2. Аномалии, связанные с потоками рассеяния.

3. Безрудные аномалии, связанные с изменением нормальной радиоактив­ности горных пород, степени их обнажения и т. п.

По интенсивности g-излучения выделяют малоинтен­сивные (до 3 - 4 мкР/ч), средней интенсивности (4 - 8 мкР/ч) и интенсивные (более 8 мкР/ч) аномалии. По протяженности аномалии разделяют на локальные (до 0,35 км) и нело­кальные.

Оценка аномалий - завершающий этап наземных поисков, имеющий исключительное значение для определения эффектив­ности поисковых работ. Из большого числа аномалий, выявлен­ных при съемке, лишь несколько про­цен­тов оказываются связан­ными с рудопроявлением, а из последних лишь небольшая часть (несколько десятков процентов) оказываются промышлен­ными месторождениями.

Критерии выделения, перспективных на поиски урана, аномалий:

1. Боль­шинству выходов урановых тел и ореолов рассеяния соответствуют относительно небольшие размеры аномалий - от десятков до 500 м. Поэтому небольшая протяженность аномалий является критерием оценки ее перспективности. Однако, локальные ано­малии наблюдаются также над пегматитами, и обнажениями пород с повышенными кларками радиоактивных элементов, например тория.

2. Достаточно высокая интенсивность γ-излучения, соответствующая содер­жанию урана в приповерхностном слое более 0,01%, является признаком перспективности аномалии.

3. Аномалии, с содержанием урана в 2 - 3 раза выше содержания урана во вме­щающих породах, в некоторых случаях могут при­ниматься за перспек­тивные.

Эманационная съемка используется в основ­ном при крупномасштаб­ных поисках на участках, закрытых рыхлыми отложениями мощностью до 5-8, иногда до 10 м. Пре­имуществом съемки является относительно высокая глубинность исследований, а недостатком - резкое падение эффективности в условиях малопроницаемых, сильно увлажненных и мерзлых грунтов.

Физические основы. Часть атомов эманации (Rn, Tn), образующихся при распаде изотопов радия, из минеральных зерен породы попадает в поро­вое пространство, заполненное газом или жидкостью. В результате диффу­зии, а также движения подземных вод, эманации могут уноситься на значи­тельное расстояние, создавая вокруг рудных тел газовые ореолы рассеяния.

Отношение количества эманации, выделяющихся из породы в ее поры, ко всему количеству образующихся эманации назы­вается коэффициентом эманирования К э. По­следний колеблется от долей процента в породах с плот­ной кри­сталлической решеткой до 95 - 98% в сильно разрушенных породах. Большой диапазон изменения коэффициента эманиро­вания затрудняет интер­претацию результатов эманационной съемки.

Удельная активность эманации С э, в порах бесконечной однородной среды определяется по формуле:

С э = (С х К э ρ)/К п

где С х - удельная активность радиоактивного элемента, из ко­торого образу­ется эманация; К п - коэффициент пористости в до­лях от объема породы; ρ - плотность породы, г/см 3 .

Если величину С х выразим в Ки/г, значение С э получим в Ки/см 3 . Эта формула пригодна для оценки концентрации эманации лишь на достаточно большой глубине, на которой отсутствует влияние утечки в атмо­сферу. По мере удаления от рудного тела или другого источника эманации их концен­трация убывает тем быстрее, чем меньше период полураспада и чем ниже коэффициент диффузии в породе.

Рассмотрим количественно распределение эманации в наносах, покры­вающих плоский активный пласт, предполагая, что мигра­ция эманации обу­словлена только диффузией:

где С э0 – концентрация эманаций на границе эманирующего пласта; С э – кон­центрация эманаций в точке с координатами (x, y, z); λ – постоянная распада радона; D – коэффициент диффузии эманаций в наносах.

На рисунке показано изменение концентрации радона в зависимости от расстояния до рудного тела. Мощность наносов h = ∞ (сплошная линия) и h = 2 м (пунктир). Коэффициент диффузии d = 0.01 см 2 /сек, λ = 3.05*10 - 6 с -1 (для радона).

Глубина отбора проб подпочвен­но­го воздуха 0.8 – 1 м, в зависимости от типа покрышки (почвы), глубинность метода составляет, в среднем, от 3 до 7 метров. При наличии механических и солевых ореолов глубинность метода возрастает. Основным фактором, опре­де­ляю­щим глубинность съемки для данного изотопа, является коэффициент диффузии D. Он растет с увеличением пористости и проницаемости пород и почв, а также с уменьшением их влажности. Именно низким значением D обусловлена неэффективность эманационных поисков в условиях заболочен­ности, вечной мерзлоты, моренных отложений, а также частично при обнаже­ниях плотных коренных пород с низкой проницаемостью.

Наиболее благоприятны для проведения эманационной съемки площа­ди развития рыхлых отложений однородного состава с от­носительно посто­ян­ной мощностью (в пределах 1-5 м) и неболь­шими колебаниями нормаль­ного эманационного поля. При мощности малопроницаемых наносов 1,5-2 м обычные эманационные съемки малоэффективны и вместо них используют глубинные поиски.

Методика исследований . Различают эманационные исследова­ния реко­г­носцировочные, площадные и детальные.

Рекогносцировочная (маршрутная) съемка в плохо изученных районах на первом этапе поисковых работ для выявления перс­пективности на уран площадей, закрытых рыхлыми отложениями, и выделения благоприятных рудоконтролирующих структур и пород. Расстояние между профилями до нескольких километров, расстояние между точками наблюдения 10 - 25 м.

Площадная съемка в масштабе 1:25 000 (сеть наблюдений: профили через 200м, точки наблюдения – через 10 м) или чаще 1:10 000 (сеть наблю­де­ний 100м; 10 м) используется для непосредственных поисков новых руд­ных полей и отдельных месторождений.

Детальная съемка в масштабе 1:5000 (сеть наблюдений 50м; 5 м) или 1:2000 (сеть наблюдений 20м; 2,5 м) используется с целью исследования выявленных радиометрических аномалий и оконтуривания рудных тел.

Обработка и интерпретация результатов . Результаты эманационной съе­м­ки изображают в виде графиков концентрации эма­нации по профилям, на которые наносится схематическая геологическая основа. По результатам детальных работ строят карты изоэман.

Задачей интерпретации является выделение среди обнаруженных анома­лий тех из них, которые представляют интерес для дальней­шего исследо­ва­ния, т. е. рудных и ореольных. При оценке аномалий учитывают следующие факторы:

1. Концентрация эманации является надежным признаком руд­ной или ореольной аномалии лишь при ее значениях свыше 1000 эман.

2. Одним из наиболее информативных факторов является изменение концен­трации аномалий с глубиной в шпурах и мелких скважинах. Для рудных аномалий характерен непрерыв­ный рост, причем с глубиной градиент концентраций растет. Для аномалий эманирования концентрация по глу­бине остается постоянной. Для остальных типов аномалий харак­терно выполаживание кривой или нере­гулярные изменения с глубиной.

3. Ореольные аномалии характеризуются широким площадным распростра­нением и изометрической формой.

Комплекс радиометрических исследований на разных ста­диях пои­с­ков и разведки месторождений радиоактивных руд. Выбор ком­п­лекса методов исследования должен учитывать геологические, гидрогео­ло­ги­чес­кие, геоморфологи­ческие особенности района.

1. Из геологи­ческих факторов наиболее сильное влияние на эффективность радиометрической съемки оказывают тектоническое строение, неоднород­ность поверхностных отложений и мощность наносов. От этого зависит постоянство нормального фона, эманирующая способность пород, осла­бление γ-излучения и эманации наносами. Поэтому параллельно с радио­ме­т­ри­чес­кими исследо­ваниями поисково-разведочные работы включают также изучение состава, свойств пород, их тектоники и т. п.

2. Из геоморфологи­ческих особенностей района основное значение имеет степень обна­женности пород, определяющая возможность применения методов той или иной глубинности.

3. Развитие гидросети в исследуемом районе, способствуя раз­витию водных и солевых ореолов, часто способствует применению различных методов радиометрической съемки. Свободный обмен подземных и поверхностных вод способствует нарушению радиоактивного равновесия с недостатком радия, что ограничивает возможность применения гамма-метода. Высокий уровень грунтовых вод снижает эффективность эманационной съемки. Районы с вечной мерзлотой и повышенной влажностью не благоприятны для эманационной съемки.

Выбор комплекса радиометрических методов базируется на райо­ниро­вании территории по условиям ведения поисково-разведочных работ. С учетом степени расчленения рельефа, условий эрозионного вскрытия пород, вмещающих рудные тела, характера четвертич­ного покрова и ряда других факторов выделяют четыре типа районов:

1. Горные области с сильно пересеченным рельефом; породы с урановым оруденением хорошо обнажены.

2. Предгорные и некоторые горные области с рельефом сред­ней сложности. Коренные породы, несущие оруденения, частично обнажены, частично покрыты четвертичным покровом.

3. Районы со слабовсхолмленным рельефом и сплошным перекрытием коре­н­ных пород рыхлыми отложениями небольшой мощности (от нескольких метров до первых десятков метров) разделяют на два подтипа: районы, где механические и солевые ореолы хотя бы спорадически выходят на пове­рх­ность; районы, в основном закрытые аллохтонными осадками.

4. Районы, где формации, несущие оруденения, не вскрыты эрозией, а также районы с большой мощностью четвертичного покрова (более 30-40 м).

На каждом этапе геологоразведочных работ комплекс методов раз­ли­чен.

На этапе региональной геологической съемки поиски урановых место­рождений являются не основ­ной, а попутной задачей (массовые поиски). Основным методом массовых поисков является пешеходная гамма-съемка, проводимая в процессе геологической съемки повсеместно. Для проверки аномалий или рудопроявлений применяют в небольшом объеме гамма-спек­трометрию и уранометрическую съемка по донным осадкам. Кроме того, обя­зательно проводится обследование на радио­активность коллекций образцов руд, всех карьеров, горных вы­работок, старых и действующих рудников.

При проведении специализированных поис­ков урановых место­рож­де­ний для перечисленных типов районов применяются следующие комплексы методов.

В районах I типа (горные районы) основным методом является пеше­ход­ная гамма-съемка. На участках, покрытых делювиаль­ными отложениями небольшой мощности, применяют шпуровую гамма-съемку, реже эманацион­ную. При детализации аномалий применяют гамма-профилирование, иссле­дование обнажений, рас­чисток и канав, для количественной оценки радиоак­тив­ности - гамма-опробование, для определения типа радиоактивности – гам­ма-спектральные измерения.

В районах II типа применяют главным образом пешеходную гамма-съе­мку, а на слабо обнаженных участках - эманационную.

В районах III типа на первом этапе работ проводится авиагамма-съемка относительно мелкого масштаба (1:25 000). Для проверки и оценки выделен­ных аномалий используют пешеходную и шпуровую гамма- и эманационную съемки, а для детального изучения аномалий - радиометрическое опробова­ние горных выработок.

В районах IV типа основным является гамма-метод исследова­ния сква­жин в комплексе с изучением керна и вод.

В районах III и IV типов большое значение имеют общие геофизиче­с­кие методы: электроразведка, магниторазведка и сейсмо­разведка. Эти методы позволяют выделять глубинные разломы, границы раздела пород различного типа, а также определять мощ­ность наносов. Ценную информацию может дать также геохими­ческая съемка по элементам - спутникам урана.

Применение радиометрических методов для изучения геологического строения района, поисков и разведки нерадиоактивных полезных ископае­мых. Данные о содержании радиоактивных элементов в горных породах не­сут информацию о типе горных пород, условиях их об­разования и последую­щего изменения. Для многих полезных ископаемых наблюдаются генетичес­кие или парагенетические связи с радиоактивными элементами. Это позво­ляет решать такие геоло­гические задачи, как литологическое расчленение горных пород, геологическое картирование (в частности, прослеживание текто­нических нарушений), поиски и разведка полезных ископаемых.

Литологическое расчленение горных пород методами радиометрии основано на различии их радиоактивности. Особенно важен гамма-метод исследования скважин в комплексе с другими геофизическими методами в случае, когда бурение скважин осуществляется без отбора керна или процент выноса керна невелик.

Повышенная радиоактивность зон текто­нических нарушений обуслов­лена как гидротермальными изме­нениями и подъемом радиоактивных флюи­дов по трещинам, так и повышенной эманирующей способностью пород в этой зоне.

Примером использования радиометрии для геологиче­ского картиро­ва­ния является оконтуривание структур в осадоч­ной толще при поисках нефтя­ных и газовых месторождений. Над многими известными месторождениями нефти и газа наблюдается пониже­ние γ-излучения (в основном ее радиевой составляющей). Это явле­ние объясняется тем, что в районах с молодой текто­никой породы над сводами структур более грубозернистые, чем на крыльях этих структур, поскольку в момент отложения осадков глубина бассейна на своде была меньше.

Радиометрические методы широко применяются на всех этапах поис­ков и разведки нерадиоактивных полезных ископаемых, гене­тически и пара­генетически связанных с ураном и торием. По­скольку радиоактивные элеме­н­ты в виде минералов или изоморф­ных примесей присутствуют во всех пег­матитах, то, например, для поисков пегматитовых редкоземельных место­ро­ж­дений с ус­пехом используются гамма- и эманационные методы. Радиомет­ри­­ческие методы полезны при поисках осадочных месторождений ванадия, молибдена, фосфоритов, углей и ряда других полезных ископаемых, также нередко отмечаемых повышением радиоак­тивности. Эти методы успешно применяются для поисков титано­вых россыпных месторождений, в которых всегда присутствуют циркон и монацит, содержащие примеси урана и тория. Наконец, радиометрические методы широко применяются при разведке месторождений калийных солей.

РАДИОМЕТРИЧЕСКИЙ АНАЛИЗ (а. radiometric analysis; н. Radioaktivitatsanalyse; ф. analyse radiometrique; и. analisis radiometriсоs) — измерение интенсивности и исследование спектрального состава гамма-, бета- и альфа-излучений, испускаемых ядрами природных радионуклидов. На измерении общей гамма-активности проб основана методика определения радия в пробах; при этом последовательно измеряют активность герметизированной пробы по мере накопления в ней радона и продуктов его распада — основных гамма-излучателей в урановом ряду. Раздельные измерения общей гамма- и бета-активности проб проводят для двухкомпонентного анализа — радия и урана в неравновесных рудах или урана и тория в рудах равновесных; при этом исходят из различия вкладов отдельных компонентов в измеряемые активности.

Гамма-спектрометрический метод основан на регистрации гамма-излучения проб в различных участках спектра, в которых преобладает излучение определяемых элементов; применяется главным образом для одновременного определения урана, радия, тория и калия в пробах. На избирательной регистрации излучений, связанных с последовательным распадом короткоживущих изотопов, основан способ временной селекции воспринимаемых излучений. Один из вариантов способа используется для определения в пробах изотопов радия (по измерениям RaC и ThC) путём регистрации запаздывающих бета-альфа совпадений. Селективные определения RaC и ThC, дополненные измерениями общей бета- и альфа-активности проб, позволяют определять в них содержание урана, радия, тория и калия.

При радиометрическом анализе помимо чисто инструментальных определений широко используют химическую подготовку проб; из пробы химическими методами выделяют интересующие радионуклиды, которые затем определяют радиометрическими приёмами. Радиохимический способ широко применяется для определения радия. Раствор с выделенным радием запаивается в барботер; после накопления в нём эманации (радона) её концентрацию определяют по измерению альфа-активности. При радиохимическом определении других радионуклидов (или их соотношений) для идентификации изотопов в приготовленных препаратах используются приёмы альфа-спектрометрии.

Для выяснения характера распределения радионуклидов на поверхности радиоактивного образца применяют радиографический метод. На полированную поверхность образца накладывают фотоплёнку, которая под воздействием ионизирующих частиц (преимущественно альфа-частиц) засвечивается. По плотности почернения фотоэмульсии (после проявления) судят о концентрации и распределении радионуклидов в образце.

Все указанные варианты радиометрического анализа основаны на относительном способе измерений, при котором содержание определяемого элемента в пробе сравнивается с его известным содержанием в препарате, принятым за эталонный.