Виды исследований в статистике. Статистическое исследование

Понятие «статистический анализ» традиционно ассоциируется с исключительно количественными, цифровыми показателями. Слово «статистика» имеет латинское происхождение и означает «состояние, положение вещей с точки зрения закона». Наполеон Бонапарт называл статистику «бюджетом вещей». В современном понимании, этот термин может быть использован в следующих значениях:

ü как специализированная отрасль знания по вопросам сбора и анализа данных. Термин «статистика» в этом значении стало применяться с середины XVIII века в Германии.

ü как массив определенных статистических данных (статистика рождаемости, статистика посещений сайта и т.п.).

ü как измеримая функция наблюдения в математической статистике: , где - выборка.

Принято считать, что статистика, как научное направление, появилось во второй половине XVIII – начале XIX веков. Конечно, методы и процедуры статистического учета применялись и развивались задолго до XVIII века. Действительно, еще в Древнем Китае проводились переписи населения, в Древнем Риме велся учет имущества граждан, да и в других царствах-государствах было что посчитать и записать. Ценность статистических методов, прежде всего в предоставлении фактов в наиболее сжатой форме. Статистика за сотни лет своей эволюции, отдельными элементами или комплексными методиками применялась и применяется и для административного, в том числе социально-политического управления, и для ведения деятельности отдельного предприятия.

Сейчас, в современном мире статистические методы применяются практически во всех сферах деятельности человека и являются методами сбора, классификации данных с последующим их анализом с целью выявления закономерностей.

Методы статистического анализа ориентированы на решения реальных задач, поэтому постоянно появляются и развиваются новые методы. Динамизм развития статистической науки и использование в самых различных областях деятельности человека, затрудняют классификацию статистических методов. Большинство исследователей с легкостью подразделяют эти методы по способу их применения и использования. В соответствии с этим подходом, статистика, как наука в современном мире, по степени охвата исследуемой области и глубины анализа подразделяется на следующие виды:

· теоретическая статистика (общая теория статистики) – разработка и исследование методов общего характера;

· прикладная статистика – разработка методов и моделей получения анализа статистических данных конкретных явлений и процессов в различных областях деятельности. Подразделяется на ряд подразделов, например, такие хорошо разработанные направления статистики, как математическую и экономическую статистику.


· статистический анализ конкретных данных. Например, медицинская статистика, правовая статистика, биометрика (измерение каких-либо параметров тела человека), технометрика (измерение технических параметров приборов и оборудования), наукометрика (статистические параметры состояния и развития различных направлений сферы образования и науки) и т.д.

Методы статистического анализа могут быть классифицированы по объему анализируемых данных и глубине их взаимосвязи и взаимозависимости. Данная классификация приведена на рисунке 8.2.1 «Классификация методов статистического анализа».

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • 3. Ряды динамики
  • Литература

1. Абсолютные и относительные величины

В результате сводки и группировки статистического материала в руках исследователя оказывается самая разнообразная информация об изучаемых явлениях и процессах. Однако, останавливаться на полученных результатах было бы большой ошибкой, потому что, даже сгруппированные по заданным признакам и отраженные в табличной или графической форме, эти данные пока являются только своего рода иллюстрацией, промежуточным результатом, который должен быть подвергнут анализу - в данном случае, статистическому. Статистический анализ - это представление изучаемого объекта в качестве расчлененной системы, т.е. комплекса элементов и связей, образующих в своем взаимодействии органическое целое .

В результате такого анализа должна быть построена модель изучаемого объекта, причем, поскольку речь идет о статистике, при построении модели должны быть использованы статистические значимые элементы и связи.

Собственно, на выявление таких значимых элементов и связей и направлен статистический анализ.

Абсолютные показатели (величины) - величины суммарные, подсчитанные или взятые из сводных статистических отчетов без всяких преобразований. Абсолютные показатели всегда именные и отражаются в тех единицах измерения, которые были заданы при составлении программы статистического наблюдения (количество возбужденных уголовных дел, количество совершенных преступлений, количество разводов и т.д.).

Абсолютные показатели являются базовыми для любых дальнейших статистических операций, однако сами они для анализа малопригодны. По абсолютным показателям, например, трудно судить об уровне преступности в разных городах или регионах и практически нельзя ответить на вопрос, где преступность выше, а где ниже, так как города или регионы могут существенно различаться численности населения, территории и другим важным параметрам.

Относительные величины в статистике представляют собой обобщающие показатели, которые раскрывают числовую форму соотношения двух сопоставляемых статистических величин. При исчислении относительных величин наиболее часто сравнивают две абсолютные, но можно сопоставлять и средние, и относительные величины, получая новые относительные показатели. Самый простой пример вычисления относительной величины - ответ на вопрос: во сколько раз одно число больше другого?

Приступая к рассмотрению относительных величин, необходимо учитывать следующее. В принципе, сравнивать можно все, что угодно, даже линейные размеры листа бумаги А4 с количеством продукции, выпускаемой Ломоносовским фарфоровым заводом. Однако, такое сравнение ничего нам не даст. Важнейшее условие для плодотворного вычисления относительных величин можно сформулировать следующим образом:

1. единицы измерения сравниваемых величин должны быть одними и теми же или вполне сопоставимыми. Числа преступлений, уголовных дел и осужденных - показатели коррелируемые, т.е. взаимосвязанные, но не сопоставимые по единицам измерения. В одном уголовном деле может быть рассмотрено несколько преступлений и осуждена группа лиц; несколько осужденных могут совершить одно преступление и, наоборот, один осужденный - множество деяний. Числа преступлений, дел и осужденных сопоставимы с численностью населения, количеством персонала системы уголовной юстиции, уровнем жизни народа и другими данными одного и того же года. Более того, в течение одного года рассматриваемые показатели вполне сопоставимы и между собой.

2. Сопоставляемые данные обязательно должны соответствовать друг другу по времени или территории их получения либо по тому и другому параметрам вместе.

Абсолютная величина, с которой сравниваются другие в е личины, называется основанием или базой сравнения, а сравн и ваемый показатель - величиной сравнения . Например, при расчете отношения динамики преступности в России в 2000-2010 гг. данные 2000 г. будут базовыми. Они могут приниматься за единицу (тогда относительная величина будет выражена в форме коэффициента), за 100 (в процентах). В зависимости от размерности сравниваемых величин выбирают наиболее удобную, показательную и наглядную форму выражения относительной величины.

Если сравниваемая величина намного превосходит основание, получаемое отношение лучше выразить в коэффициентах. Например, преступность за определённый период (в годах) увеличилась в 2,6 раза. Выражение в разах в данном случае будет показательнее, чем в процентах. В процентах относительные величины выражаются тогда, когда величина сравнения не сильно отличается от базы.

Относительные величины, применяемые в статистике, в том числе и правовой, бывают разных видов. В правовой статистике применяются следующие виды относительных величин:

1. отношения, характеризующие структуру совокупности, или отношения распределения;

2. отношения части к целому, или отношения интенсивности;

3. отношения, характеризующие динамику;

4. отношения степени и сравнения.

Относительная величина распределения - это относительная величина, выражаемая в процентах отдельных частей совокупности изученных явлений (преступлений, преступников, гражданских дел, исков, причин, мер предупреждения и т.д.) к их общему итогу, принимаемому за 100% . Это - самый распространенный (и простой) вид относительных данных, применяемых в статистике. Это, например, структура преступности (по видам преступлений), структура судимости (по видам преступлений, по возрасту осужденных) и т.д.

статистический анализ абсолютная величина

Отношение интенсивности (отношение части к целому) - обобщающая относительная величина, которая отражает распространенность определенного признака в наблюдаемой совокупности.

Самый распространенный показатель интенсивности, применяемый в правовой статистике - интенсивности преступности. Интенсивность преступности обычно отражается посредством коэффициента преступности, т.е. числа преступлений на 100 или 10 тыс. жителей.

КП= (П*100000)/Н

где П - абсолютное число учтенных преступлений, Н - абсолютная численность населения.

Обязательное условие, определяющее саму возможность вычисления таких показателей, как было сказано выше - все используемые абсолютные показатели берутся на одной территории и за один промежуток времени.

Отношения, характеризующие динамику , представляют собой обобщающие относительные величины, показывающие изменение во времени тех или иных показателей правовой статистики . За временной интервал обычно принимается год.

За основание (базу), равное 1, или 100%, принимаются сведения об изучаемом признаке определенного года, который был чем-то характерен для изучаемого явления. Данные базового года выполняют роль неподвижной базы, к которой процентируются показатели последующих лет.

Задачи статистического анализа часто требуют ежегодных (или по иным периодам) сопоставлений, когда за базу принимаются данные каждого предыдущего года (месяца или другого периода). Подобная база называется подвижной . Обычно это используется при анализе временных рядов (рядов динамики).

Отношения степени и сравнения позволяют сопоставлять различные показатели в целях выявления, какая величина насколько больше другой, в какой мере одно явление отличается от другого или схоже с ним, что имеется общего и отличительно в наблюдаемых статистических процессах и т.д.

Индекс - это специально созданный относительный показатель сравнения (во времени, пространстве, при сравнении с прогнозом и т.д.), показывающий, во сколько раз уровень изучаемого явления в одних условиях отличается от уровня того же явления в других условиях. Наиболее распространены индексы в экономической статистике, хотя они играют определенную роль и при анализе правовых явлений.

Без индексов не обойтись в случаях, когда необходимо сопоставить несоизмеримые показатели, простое суммирование которых невозможно. Поэтому обычно индексы определяют как числа-показатели для измерения средней динамики совокупности разнородных элементов .

В статистике индексы обычно обозначают буквой I (i). Прописная буква или заглавная - зависит от того, идет ли речь об индивидуальном (частном) индексе или он общем.

Индивидуальные индексы (i) отражают отношение показателя текущего периода к соответствующему показателю сравниваемого периода.

Сводные индексы используются при анализе соотношения сложных социально-экономических явлений и состоят из двух частей: собственно индексируемой величины и соизмерителя ("веса").

2. Средние величины и их применение в правовой статистике

Результатом обработки абсолютных и относительных показателей является построение рядов распределения. Ряд распределения - это упорядоченные по качественным или количественным признакам распределения единиц совокупности . Анализ этих рядов лежит в основе любого статистического анализа, каким бы сложным в дальнейшем он не оказался.

Ряд распределения может быть построен на основании качественных или количественных признаков. В первом случае он называется атрибутивным , во втором - вариационным . При этом различия количественного признака называется вариацией , а сам этот признак - вариантой . Именно с вариационными рядами чаще всего приходится иметь дело правовой статистике.

Вариационный ряд всегда состоит из двух колонок (граф). В одной указывается значение количественного признака в порядке возрастания, которые, собственно, и называют вариантами, которые обозначаются x . В другой колонке (графе) указывается число единиц, которые свойственны той или иной варианте. Они называются частотами и обозначаются латинской буквой f .

Таблица 2.1

Варианта x

Частота f

Частота проявления того или иного признака очень важна при вычислении других значимых статистических показателей, а именно - средних и показателей вариации.

Вариационные ряды, в свою очередь, могут быть дискретными или интервальными . Дискретные ряды, как следует из названия, построены на основании дискретно варьирующих признаков, а интервальными - на основании непрерывных вариаций. Так, например, распределение правонарушителей по возрасту может быть как дискретным (18, 19,20 лет и т.д.), так и непрерывным (до 18 лет, 18-25 лет, 25-30 лет и т.д.). Причем сами интервальные ряды могут строиться как по дискретному, так и по непрерывному принципу. В первом случае границы смежных интервалов не повторяются; в нашем примере интервалы будут выглядеть так: до 18 лет, 18-25, 26-30, 31-35 и т.д. Такой ряд называется непрерывный дискретный ряд . Интервальный ряд с непрерывной вариацией предполагает совпадение верхней границы предыдущего интервала с нижней границей последующей.

Самый первый показатель, описывающий вариационные ряды - это средние величины . Они играют важную роль в правовой статистике, поскольку только с их помощью можно охарактеризовать совокупности по количественному варьирующему признаку, по которому можно их сравнивать. С помощью средних величин можно сравнивать интересующие нас совокупности юридически значимых явлений по тем или иным количественным признакам и делать из этих сравнений необходимые выводы.

Средние величины отражают самую общую тенденцию (закономерность ), присущую всей массе изучаемых явлений. Она проявляется в типичной количественной характеристике, т.е. в средней величине всех имеющихся (варьирующих) показателей.

Статистикой разработано много видов средних величин: средняя арифметическая, геометрическая, кубическая, гармоническая и т.д. Однако в правовой статистике они практически не применяются, поэтому мы будем рассматривать только два вида средние - среднюю арифметическую и среднюю геометрическую.

Самая распространенная и хорошо известная средняя - это средняя арифметическая . Для ее расчета высчитывается сумма показателей и делится на общее число показателей. Например, семья из 4-х человек состоит из родителей возрастом 38 и 40 лет и двоих детей возрастом 7год и 10 лет. Мы суммируем возраст: 38+40+7+10 и полученную сумму 95 делим на 4. Полученный средний возраст семьи - 23,75 года. Или рассчитаем среднемесячную нагрузку следователей, если в отделе из 8 человек за месяц раскрыто 25 дел. Делим 25 на 8 и получаем 3,125 дела в месяц на следователя.

В правовой статистике средняя арифметическая используется при расчете нагрузки сотрудников (следователей, прокуроров, судей и т.д.), расчете абсолютного прироста преступности, расчете выборки и т.д.

Однако в приведенным примере среднемесячная нагрузка на следователя рассчитана неверно. Дело в том, что простая средняя арифметическая не учитывает частоту изучаемого признака. В нашем примере среднемесячная нагрузка на следователя столь же корректна и информативна, как "средняя температура по больнице" из известного анекдота, которая, как известно, комнатная. Для того, чтобы при расчете средней арифметической учитывать частоту проявлений изучаемого признака, используется так средняя арифметическая взвешенная илисредняя для дискретных вариационных рядов. (Дискретный вариационный ряд - последовательность изменения признака по дискретным (прерывистым) показателям).

Средняя арифметическая взвешенная (средняя взвешенная) не имеет принципиальных отличий от простой средней арифметической. В ней суммирование одного и того же значения заменено умножением этого значения на его частоту, т.е. в этом случае каждое значение (варианта) взвешивается по частоте встречаемости.

Так, вычисляя по среднюю нагрузку следователей, мы должны умножим число дел на число следователей, который расследовали именно такое количество дел. Обычно такие расчеты удобно представлять в виде таблиц:

Таблица 2.2

Число дел

(варианта х )

Число следователей (частота f )

Произведение вариант

на частоты (х f )

2. Вычислим собственно среднюю взвешенную по формуле:

где x - число уголовных дел, а f - число следователей.

Таким образом, средняя взвешенная равна не 3,125, а 4,375. Если вдуматься, то так и должно быть: нагрузка на каждого отдельного следователя возрастает за счет того, что один следователь в нашем гипотетическом отделе оказался бездельником - или, наоборот, расследовал особо важное и сложное дело. Но вопрос интерпретации результатов статистического исследования будет рассматриваться в следующей теме. В некоторых случаях, а именно - в случаях сгруппированных частот дискретного распределения - вычисление средней, на первый взгляд, неочевидно. Предположим, нам необходимо вычислить среднюю арифметическую для распределения лиц, осужденных за хулиганство, по возрасту. Распределение выглядит следующим образом:

Таблица 2.3

(варианта х )

Число осужденных (частота f )

Середина интервала

Произведение вариант

на частоты (х f )

(21-18) /2+18=19,5

Далее средняя высчитывается по общему правилу и составляет для данного дискретного ряда 23,6 года. В случае т. н. открытых рядов, то есть в ситуациях, когда крайние интервалы определяются "менее x " или "больше x ", величина крайних интервалов задается аналогично другим интервалам.

3. Ряды динамики

Общественные явления, изучаемые статистикой, находятся в постоянном развитии и изменении. Социально-правовые показатели могут быть представлены не только в статической форме, отражающей определенное явление, но и как процесс, происходящий во времени и пространстве, а также в виде взаимодействия исследуемых признаков. Иными словами, динамические ряды показывают развитие признака, т.е. его изменение во времени, пространстве или в зависимости от условий среды.

Данный ряд представляет собой последовательность средних величин в указанные периоды времени (за каждый календарный год).

Для более глубокого изучения общественных явлений и их анализа простого сопоставления уровней ряда динамики недостаточно, необходимо исчислять производные показатели ряда динамики: абсолютный прирост, темп роста, темп прироста, средние темпы роста и прироста, абсолютное содержание одного процента прироста.

Расчет показателей рядов динамики осуществляется на основе сравнения их уровней. При этом возможны два способа сопоставления уровней динамического ряда:

базисные показатели, когда все последующие уровни сравнивают с некоторым начальным, принятым за базу;

цепные показатели, когда каждый последующий уровень ряда динамики сопоставляют с предыдущим.

Абсолютный прирост показывает, на сколько единиц уровень текущего периода больше или меньше уровня базисного или предыдущего периода за конкретный промежуток времени.

Абсолютный прирост (П) исчисляется как разность между сравниваемыми уровнями.

Базисный абсолютный прирост:

П б = y i - y баз . (ф.1).

Цепной абсолютный прирост:

П ц = y i - y i -1 (ф.2).

Темп роста (Тр) показывает, во сколько раз (на сколько процентов) уровень текущего периода больше или меньше уровня базисного или предыдущего периода:

Базисный темп роста:

(ф.3)

Цепной темп роста:

(ф.4)

Темп прироста (Тпр) показывает, на сколько процентов уровень текущего периода больше или меньше уровня базисного или предыдущего периода, принятого за базу сравнения, и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу.

Темп прироста можно также рассчитать путем вычитания из темпа роста 100%.

Базисный темп прироста:

или (ф.5)

Цепной темп прироста:

или (ф.6)

Средний темп роста исчисляется по формуле средней геометрической из темпов роста ряда динамики:

(ф.7)

где - средний темп роста;

- темпы роста для отдельных периодов;

n - число темпов роста.

Подобные задачи с показателем корня больше трех, как правило, решаются при помощи логарифмирования. Из алгебры известно, что логарифм корня равен логарифму подкоренной величины, деленной на показатель корня, и что логарифм произведения нескольких сомножителей равен сумме логарифмов этих сомножителей.

Таким образом, средние темпы роста исчисляются путем извлечения корня n степени из произведений индивидуальных n - цепных темпов роста. Средние темпы прироста представляют собой разность между средним темпом роста и единицей (), или 100%, когда темп роста выражен в процентах:

или

При отсутствии в динамическом ряду промежуточных уровней средние темпы роста и прироста определяются по следующей формуле:

(ф.8)

где - конечный уровень динамического ряда;

- начальный уровень динамического ряда;

n - число уровней (дат).

Очевидно, что показатели средних темпов роста и прироста, исчисленные по формулам (ф.7 и ф.8), имеют одинаковые числовые значения.

Абсолютное содержание 1% прироста показывает, какое абсолютное значение содержит 1% прироста и исчисляется как отношение абсолютного прироста к темпу прироста.

Абсолютное содержание 1% прироста:

базисные: (ф.9)

цепные: (ф.10)

Вычисление и анализ абсолютного значения каждого процента прироста способствуют более глубокому пониманию характера развития исследуемого явления. Данные нашего примера показывают, что, несмотря на колебания темпов роста и прироста за отдельные годы, базисные показатели абсолютного содержания 1% прироста остаются неизменными, в то время как цепные показатели, характеризующие изменения абсолютного значения одного процента прироста в каждом последующем году по сравнению с предыдущим, непрерывно возрастают.

При построении, обработке и анализе рядов динамики часто возникает потребность в определении средних уровней изучаемых явлений за определенные промежутки времени. Средняя хронологическая интервального ряда исчисляется при равных интервалах по формуле средней арифметической простой, при неравных интервалах - по средней арифметической взвешенной:

где - средний уровень интервального ряда;

- исходные уровни ряда;

n - число уровней.

Для моментного ряда динамики при условии равенства промежутков времени между датами исчисление среднего уровня производится по формуле средней хронологической:

(ф.11)

где - средняя хронологическая величина;

y 1 ,., y n - абсолютный уровень ряда;

n - число абсолютных уровней ряда динамики.

Средняя хронологическая из уровней моментного ряда динамики равняется сумме показателей этого ряда, деленной на число показателей без одного; при этом начальный и конечный уровни должны быть взяты в половинном размере, так как число дат (моментов) обычно бывает наединицу больше, чем число периодов.

В зависимости от содержания и формы представления исходных данных (интервальные или моментные ряды динамики, равные или нет временные интервалы) для вычисления различных социальных показателей, например, среднегодовое количество преступлений и правонарушений (по видам), среднего размера остатков оборотных средств, среднесписочного числа правонарушителей и т.п., используют соответствующие аналитические выражения.

4. Статистические методы изучения взаимосвязей

В предыдущих вопросах мы рассматривали, если можно так сказать, анализ "одномерных" распределений - вариационных рядов. Это очень важный, но далеко не единственный вид статистического анализа. Анализ вариационных рядов является основанием для более "продвинутых" видов статистического анализа, в первую очередь - для изучения взаимосвязей . В результате такого исследования вскрываются причинно-следственные отношения между явлениями, что позволяет определить, изменении каких признаков влияет на вариации изучаемых явлений и процессов. При этом признаки, обуславливающие изменение других, называются факторными (факторами), а признаки, изменяющиеся под их воздействием - результативными.

В статистической науке различают два вида связей между различными признаками и их сведениями - функциональную связь (жестко-детерминированную) и статистическую (стохастическую).

Для функциональных связей характерно полное соответствие между изменением факторного признака и изменением результативной величины. Эта взаимосвязь одинаково проявляется у всех единиц любой совокупности. Самый простой пример: повышение температуры отражается на объеме ртути в градуснике. При этом температура окружающей среды выступает в качестве фактора, а объем ртути - в качестве результативного признака.

Функциональные взаимосвязи характерны для явлений, изучаемых такими науками, как химия, физика, механика, в которых есть возможность ставить "чистые" эксперименты, при которых устраняется влияние посторонних факторов. Дело в том, что функциональная связь между двумя возможна только в том случае, если вторая величина (результативный признак) зависит только и исключительно от первой. В общественных явлениях такое наблюдается крайне редко.

Социально-правовые процессы, представляющие собой результат одновременного воздействия большого количества факторов, описываются посредством статистических связей, то есть связей стохастически (случайно ) детерминированных , когда разным значениям одной переменной соответствуют разные значения другой переменной.

Наиболее важный (и распространенный) случай стохастической зависимости - корреляционная зависимость . При такой зависимости причина определяет следствие не однозначно, а лишь с определенной долей вероятности. Выявлению таких связей посвящен отдельный вид статистического анализа - корреляционный анализ.

Основная задача корреляционного анализа - на основе строго математических приемов установить количественное выражение зависимости, существующей между исследуемыми признаками. Существует несколько подходов к тому, как именно вычисляется корреляция и, соответственно, несколько видов коэффициентов корреляции: коэффициент сопряженности А.А. Чупрова (для измерения связи между качественнымипризнаками), коэффициент ассоциации К. Пирсона, а также коэффициенты ранговой корреляции Спирмена и Кендалла. В общем случае такие коэффициенты показывают, с какой вероятностью проявляются изучаемые взаимосвязи. Соответственно, чем коэффициент выше, тем более выраженной является связь между признаками.

Между изучаемыми факторами может существовать как прямая, так и обратная корреляционная зависимость. Прямая корреляционная зависимость наблюдается в случаях, когда изменению значений фактора соответствуют такие же изменения значения результативного признака, то есть, когда увеличивается значение факторного признака, увеличивается и значение результативного, и наоборот. Например, между криминогенными факторами и преступностью существует прямая корреляционная зависимость (со знаком "+"). Если же увеличение значений одного признака вызывает обратные изменения значений другого, то такая связь называется обратной . Например, чем выше социальный контроль в обществе, тем ниже преступность (связь со знаком "-").

И прямые, и обратные связи могут быть прямолинейными и криволинейными.

Прямолинейные (линейные) связи проявляются тогда, когда с увеличением значений признака-фактора происходит возрастание (прямая) или уменьшение (обратная) величины признака-следствия. Математически такая связь выражается уравнением регрессии: у = а + b х, где у - признак-следствие; а и b - соответствующие коэффициенты связи; х - признак-фактор.

Криволинейные связи носят иной характер. Возрастание величины факторного признака оказывает неравномерное влияние на величину результирующего признака. Вначале эта связь может быть прямой, а затем - обратной. Известный пример - связь преступлений с возрастом правонарушителей. Сначала криминальная активность лиц растет прямо пропорционально увеличению возраста правонарушителей (приблизительно до 30 лет), а затем с увеличением возраста преступная активность снижается. Причем вершина кривой распределения правонарушителей по возрасту сдвинута от средней влево (к более молодому возрасту) и является асимметричной.

Корреляционные прямолинейные связи могут быть одн о факторными , когда исследуется связь между одним признаком-фактором и одним признаком-следствием (парная корреляция). Они могут быть и многофакторными, когда исследуется влияние многих взаимодействующих между собой признаков-факторов на признак-следствие (множественная корреляция).

Но, какой бы из коэффициентов корреляции не использовался, какая бы корреляция не исследовалась, установить связь между признаками, исходя только из статистических показателей, невозможно. Первоначальный анализ показателей - это всегда анализ качественный , в ходе которого изучается и уясняется социально-правовая природа явления. При этом используются те научные методы и подходы, которые характерны для отрасли науки, изучающей данное явление (социологии, права, психологии и т.д.). Затем анализ группировок и средних величин позволяет выдвинуть гипотезы, построить модели, определить тип связи и зависимости. Только после этого определяется количественная характеристика зависимости - собственно, коэффициент корреляции.

Литература

1. Аванесов Г.А. Основы криминологического прогнозирования. Учебное пособие. М.: ВШ МВД СССР, 1970.

2. Аврутин К.Е., Гилинский Я.И. Криминологический анализ преступности в регионе: методология, методика, техника. Л., 1991.

3. Адамов Е. и др. Экономика и статистика фирм: Учебник / Под ред. С.Д. Ильенковой. М.: Финансы и статистика, 2008.

4. Балакина Н.Н. Статистика: Учеб. - метод. комплекс. Хабаровск: ИВЭСЭП, филиал в г. Хабаровске, 2008.

5. Блувштейн Ю.Д., Волков Г.И. Динамические ряды преступности: Учебное пособие. Минск, 1984.

6. Боровиков В.П., Боровиков И.П. STATISTICA - Статистический анализ и обработка данных в среде Windows. М.: Информационно-издательский дом "Филинъ”, 1997.

7. Бородин С.В. Борьба с преступностью: теоретическая модель комплексной программы. М.: Наука, 1990.

8. Вопросы статистики // Ежемесячный научно-информационный журнал Госкомстата РФ.М., 2002-2009 гг.

9. Гусаров В.М. Статистика: Учеб. пособие для вузов. М.: ЮНИТИ-ДАНА, 2009.

10. Добрынина Н.В., Нименья И.Н. Статистика: Учеб. - метод. пособие. СПб.: СПбГИЭУ, 2009.

11. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник для вузов / Под ред.И. И. Елисеевой.4-е изд. М.: Финансы и статистика, 1999.

12. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник. - М.: Финансы и статистика, 1995.

13. Еремина Т., Матятина В., Плущевская Ю. Проблемы развития секторов российской экономики // Вопросы экономики. 2009. № 7.

14. Ефимова М.Р., Ганченко О.И., Петрова Е.В. Практикум по общей теории статистики: Учеб. пособие.2-е изд., перераб. и доп. М.: Финансы и статистика, 2009.

15. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник. - М.: ИНФРА-М, 1998.

16. Кириллов Л.А. Криминологическое изучение и предупреждение преступности органами внутренних дел М., 1992.

17. Косоплечев Н.П., Методы криминологического исследования. М., 1984.

18. Ли Д.А. Преступность в России: системный анализ. М., 1997.

19. Ли Д.А. Уголовно-статистический учет: структурно-функциональные закономерности. М.: Информационно-издательское агентство "Русский мир”, 1998.

20. Макарова Н.В., Трофимец В.Я. Статистика в Excel: Учеб. пособие. М.: Финансы и статистика, 2009.

21. Нестеров Л.И. Новые веяния в статистике национального богатства // Вопросы статистики. 2008. № 11.

22. Петрова Е.В. и др. Практикум по статистике транспорта: Учеб. пособие. М.: Финансы и статистика, 2008.

23. Преступность в России в девяностых годах и некоторые аспект законности и борьбы с нею. М., 1995.

24. Преступность, статистика, закон // Под ред. проф. А.И. Долговой. М.: Криминологическая ассоциация, 1997.

25. Ростов К.Т. Преступность в регионах России (социально-криминологический анализ). СПб.: СПб академия МВД России, 1998.

26. Руководство для переписчика о порядке проведения Всероссийской переписи населения 2002 года и заполнения переписных документов. М.: ПИК "Офсет", 2003.

27. Савюк Л.К. Правовая статистика: Учебник. М.: Юристъ, 1999.

28. Салин В.Н., Шпаковская Е.П. Социально-экономическая статистика: Учебник для вузов. М.: Гарданика Юрист, 2008.

29. Сиденко А.В., Попов Г.Ю., Матвеева В.М. Статистика: Учебник. М.: Дело и Сервис, 2008.

30. Социальная профилактика правонарушений: советы, рекомендации // Под ред. Д.А. Керимова. М., 1989.

31. Социальная статистика: Учебник для вузов // Под ред. И.И. Елисеевой. 3-е изд. М.: Финансы и статистика, 2009.

Размещено на Allbest.ru

Подобные документы

    Рассмотрение основных методов статистического анализа. Исследование Кунгурского муниципального района. Проведение расчетов по показателям ежегодника. Анализ демографии и социально-экономического развития данного района по результатам применения.

    курсовая работа , добавлен 24.06.2015

    Средняя величина – свободная характеристика закономерностей процесса в тех условиях, в которых он протекает. Формы и методы расчета средних величин. Применение средних величин на практике: расчет дифференциации заработной платы по отраслям экономики.

    курсовая работа , добавлен 04.12.2007

    Статистические методы анализа разводов. Статистический анализ разводов в Амурской области. Анализ динамики и структуры разводов. Группировка городов и районов Амурской области по количеству разводов за год. Расчет средних величин и показателей вариации.

    курсовая работа , добавлен 12.04.2014

    Аспекты статистического анализа обеспеченности жильем. Применение статистических методов для анализа обеспеченности жильем населения. Анализ однородности совокупности районов по коэффициенту демографической нагрузки. Корреляционно-регрессионный анализ.

    курсовая работа , добавлен 18.01.2009

    Организация государственной статистики в России. Требования, предъявляемые к собираемым данным. Формы, виды и способы статистического наблюдения. Подготовка статистического наблюдения. Ошибки статистического наблюдения. Методы контроля за статистикой.

    реферат , добавлен 02.12.2007

    Разработка программы наблюдения уголовно-правовой статистики, ее основные этапы и предъявляемые требования, методы и порядок реализации. Определение состояния преступности в исследуемом районе. Правила оформления результатов статистического наблюдения.

    контрольная работа , добавлен 18.05.2010

    Классификация статистической документации. Виды документов: письменные, иконографические, статистические и фонетические. Методы и способы анализа материалов: неформализованные (традиционные) и формализованные. Порядок осуществления контент-анализа.

    презентация , добавлен 16.02.2014

    Понятие средней величины. Метод средних величин в изучении общественных явлений. Актуальность применения метода средних величин в изучении общественных явлений обеспечивается возможностью перехода от единичного к общему, от случайного к закономерному.

    курсовая работа , добавлен 13.01.2009

    Понятие статистического наблюдения. Анализ прямолинейных и криволинейных корреляционных связей. Знакомство с формулами и величинами статистического наблюдения. Анализ расчетов взаимосвязи индексов, построение гистограммы, элементы ряда распределения.

    контрольная работа , добавлен 27.03.2012

    Характеристика основных показателей статистического анализа социальной обусловленности общественного здоровья в Российской Федерации. Уровни оценки здоровья с точки зрения социальной медицины. Классификация детской части населения по группам здоровья.

Чтобы правильно выбрать статистический метод анализа данных в психологическом исследовании, нужно вначале сориентироваться в основных методах статистической обработки: какими они бывают, в каких случаях применяются, с какой целью и какой можно получить результат.

Выбор метода статистического анализа данных зависит от цели и задач исследования. Основные методы статистического анализа данных, широко используемые для обработки результатов эмпирических исследований в дипломных работах или ВКР по психологии, таковы:

  • Вычисление описательных статистик . Описательные статистики, как правило, вычисляются во всех без исключения дипломных работах по психологии. Чаще всего, по всем шкалам всех методик исследования вычисляются среднее значения (M) и стандартные отклонения (SD), и эти данные вносятся в таблицу первичных результатов эмпирического исследования, прилагаемую к работе. Их рассматривают, чаще всего, в первом пункте эмпирической главы , сравнивая с нормативными данными по методикам и определяя, обладает ли исследуемая выборка какими-либо особенностями, которые должны быть учтены или ставят ограничение в интерпретации результатов исследования.
  • Корреляционный анализ — выявление взаимосвязей между шкалами исследования. Этот метод позволяет обнаружить линейные (прямые и обратные) связи между переменными либо их отсутствие. Корреляционный анализ является основным методом статистического анализа данных в работах, целью которых является изучение влияния чего-либо на что-либо, зависимости А от Б.
  • Статистический анализ различий — это группа методов сравнения двух или более выборок. Сюда относятся методы сравнения выборок по критериям Стьюдента, Манна-Уитни, Вилкоксона и т.д. Все эти методы позволяют определить, насколько статистически значимыми (достоверными) являются различия между двумя или более группами испытуемых. Они являются главными методами математической обработки данных в исследованиях, целью которых является изучение особенностей какой-либо группы или изучение различий между группами, в том числе гендерных различий.
  • Многомерные методы статистического анализа данных — применяются в исследованиях с большим количеством исследуемых признаков (шкал и методик исследования). В психологических исследованиях это чаще всего факторный анализ и кластерный анализ . Эти методы позволяют классифицировать, обобщить, сократить количество изучаемых переменных, разделить их на группы или классы, выйти на другой уровень обобщения. Обработка результатов эмпирических исследований с применением многомерных методов считается «высшим классом» математической обработки данных. Дипломные работы, в которых применяются многомерные методы, как правило, заведомо претендуют на отличную оценку.

Анализ данных и статистика - вещи одного порядка. Если статистика первооснова и источник информации, то анализ данных - это инструмент для ее исследования, и зачастую анализ данных без статистики невозможен.

Получить обучающее видео

Статистика - это изучение любых явлений в числовой форме. Статистика используется анализом данных в количественных исследованиях. Противоположность им - качественные, описывающие ситуацию без применения цифр, в текстовом выражении.

Количественный анализ статистических данных проводится по интервальной шкале и по рациональной:

  • интервальная шкала указывает, насколько тот или иной показатель больше или меньше другого и дает возможность подобрать похожие по свойствам соотношения показатели,
  • рациональная шкала показывает, во сколько раз тот или иной показатель больше или меньше другого, но в ней содержатся только положительные значения, что не всегда будет отражать реальное положение дел.

Как используют Data Mining в компании Mail.ru?

Получить обучающее видео

Методы анализа статистических данных

В анализе статистических данных можно выделить аналитический этап и описательный. Описательный этап - последний, он включает представление собранных данных в удобном графическом виде – в графиках, диаграммах, дашбордах. Аналитический этап - это анализ, заключающийся в использовании одного из следующих методов:

  • статистического наблюдения – систематического сбора данных по интересующим характеристикам;
  • сводки данных, в которой можно обработать информацию после наблюдения; она описывает отдельные факты как часть общей совокупности или создает группировки, делит информацию по группам на основании каких-либо признаков;
  • определении абсолютной и относительной статистической величины; абсолютная величина придает данным количественные характеристики в индивидуальном порядке, в независимости от других данных; относительные величины описывают одни объекты или признаки относительно других;
  • метода выборки – использовании при анализе не всех данных, а только их части, отобранной по определенным правилам (выборка может быть случайной, стратифицированной, кластерной и квотной);
  • корреляционного и регрессионного анализа - выявляет взаимосвязи данных и причины, по которым данные зависят друг от друга, определяет силу этой зависимости;
  • метода динамических рядов - отслеживает силу, интенсивность и частоту изменений объектов и явлений; позволяет оценить данные во времени и дает возможность прогнозирования явлений.

Программное обеспечение для статистического исследования

Статистические исследования могут проводить маркетологи-аналитики:

Для качественного анализа статистических данных необходимо либо обладать знаниями математической статистики, либо использовать отчетно-аналитическую программу, либо не заниматься этим. Европейские компании давно осознали пользу такого анализа, поэтому либо нанимают хороших аналитиков с математическим образованием, либо устанавливают профессиональное программное обеспечение для аналитиков-маркетологов. Ежедневный анализ в этих компаниях помогает им правильно организовывать закупку товаров, их хранение и логистику, корректировать количество персонала и их рабочие графики.

Решения для автоматизации анализа данных позволяют работать с ними аналитикам-маркетологам. Сегодня есть решения, доступные даже небольшим компаниям, такие как Tableau. Их преимущества по сравнению с анализом, проведенным исключительно человеком:

  • невысокая стоимость внедрения (от 2000 рублей в месяц – на февраль 2018 года),
  • современное графическое представление анализа,
  • возможность мгновенно переходить от одного, более полного отчета, к другому, более детальному.

Хотите узнать, как провести анализ и сделать отчеты быстро?

Получить обучающее видео

Выделяют пять основных видов статистического анализа, исполь­зуемых при проведении маркетинговых исследований: дескриптивный анализ, выводной анализ, анализ различий, анализ связей и предсказательный анализ. Иногда эти виды анализа используются по отдельности, иногда - совместно.

В основе дескриптивного анализа лежит использование таких ста­тистических мер, как средняя величина (средняя), мода, среднее квадратическое отклонение, размах или амплитуда вариации.

Анализ, в основе которого лежит использование статистических процедур (например, проверка гипотез) с целью обобщения полученных результатов на всю совокупность, называется выводным анализом.

Анализ различий используется для сравнения результатов исследо­вания двух групп (двух рыночных сегментов) для определения степени реального отличия в их поведении, в реакции на одну и ту же рекламу и т.п.

Анализ связей направлен на определение систематических связей (их направленности и силы) переменных. Например, определение, как увеличение затрат на рекламу влияет на увеличение сбыта.

Предсказательный анализ используется в целях прогнозирования развития событий в будущем, например путем анализа временных рядов. Статистические методы прогнозирования рассмотрены в разделе 7.

Инструменты дескриптивного анализа

Для описания информации, полученной на основе выборочных измерений, широко используется две группы мер. Первая включает меры «центральной тенденции», или меры, которые описывают типичного рес­пондента или типичный ответ. Вторая включает меры вариации, или ме­ры, описывающие степень схожести или несхожести респондентов или ответов с «типичными» респондентами или ответами.

Существуют и другие описательные меры, например меры асим­метрии (насколько найденные кривые распределения отличаются от нор­мальных кривых распределения). Однако они используются не столь час­то, как вышеупомянутые, и не представляют особого интереса для заказ­чика.

Ниже дается только краткая характеристика указанных мер. Более подробную информацию можно получить из книг по математической статистике, например , .

К числу мер центральной тенденции относятся мода, медиана и средняя.

Мода характеризует величину признака, появляющуюся наиболее часто по сравнению с другими величинами данного признака. Мода но­сит относительный характер, и необязательно, чтобы большинство рес­пондентов указало именно эту величину признака.

Медиана характеризует значение признака, занимающее срединное место в упорядоченном ряду значений данного признака.

Третьей мерой центральной тенденции является средняя величина, которая чаще всего рассчитывается как средняя арифметическая величина. При ее вычислении общий объем признака поровну распределяется между всеми единицами совокупности.

Видно, что степень информативности средней величины больше, чем медианы, а медианы - моды.

Однако рассмотренные меры не характеризуют вариацию ответов на какой-то вопрос или, говоря другими словами, несходство, различие респондентов или измеренных характеристик. Очевидно, что помимо знания величин мер центральной тенденции важно установить, насколь­ко близко к этим величинам расположены остальные полученные оцен­ки. Обычно используют три меры вариации: распределение частот, раз­мах вариации и среднее квадратическое отклонение.

Распределение частот представляет в табличной или графической форме число случаев появления каждого значения измеренной характе­ристики (признака) в каждом выбранном диапазоне ее значений. Распре­деление частот позволяет быстро сделать выводы о степени подробности результатов измерений.

Размах вариации определяет абсолютную разность между макси­мальным и минимальным значениями измеренного признака. Говоря другими словами, это разница между конечными точками в распределе­нии упорядоченных величин измеренного признака. Данная мера опре­деляет интервал распределения значений признака.

Среднее квадратическое отклонение является обобщающей статисти­ческой характеристикой вариации значений признака. Если эта мера ма­ла, то кривая распределения имеет узкую, сжатую форму (результаты из­мерений обладают высокой степенью схожести); если мера велика, то кривая распределения имеет широкий, растянутый вид (велика степень различия оценок).

Ранее было отмечено, что выбор шкалы измерений, а следователь­но, типа вопросов в опросном листе предопределяют количество полу­чаемой информации. Подобным образом, количество информации, полу­чаемой при использовании рассмотренных выше мер, является различ­ным. Общим правилом является то, что статистические меры дают воз­можность получить больше информации при применении наиболее ин­формативных шкал измерений. Выбор шкалы измерений предопределяет выбор статистических мер. Например, один из вопросов демографиче­ского исследования, при проведении которого использовалась шкала на­именований, касался национальности. Русским был присвоен код 1, ук­раинцам - 2, татарам - 3 и т.д. В данном случае, конечно, можно вы­числить среднее значение. Но как интерпретировать среднюю нацио­нальность, равную, скажем, 5,67? Для вычисления средних надо исполь­зовать интервальную шкалу или шкалу отношений. Однако в нашем примере можно использовать моду.

Что касается мер вариации, то при использовании номинальной шкалы применяется распределение частот, при использовании шкалы порядков - кумулятивное распределение частот, а при использовании интервальной шкалы и шкалы отношений - среднее квадратическое от­клонение.

Статистический вывод

Вывод является видом логического анализа, направленного на по­лучение общих заключений о всей совокупности на основе наблюдений за малой группой единиц данной совокупности.

Выводы делаются на основе анализа малого числа фактов. Напри­мер, если два ваших товарища, имеющих одну и ту же марку автомобиля, жалуются на его качество, то вы можете сделать вывод о низком качестве данной марки автомобиля в целом.

Статистический же вывод основан на статистическом анализе ре­зультатов выборочных исследований и направлен на оценку параметров совокупности в целом. В данном случае результаты выборочных исследо­ваний являются только отправной точкой для получения общих выводов.

Например, автомобилестроительная компания провела два незави­симых исследования с целью определения степени удовлетворенности потребителей своими автомобилями. Первая выборка включала 100 по­требителей, купивших данную модель в течение последних шести меся­цев. Вторая выборка включала 1000 потребителей. В ходе телефонного интервьюирования респонденты отвечали на вопрос: «Удовлетворены вы или не удовлетворены купленной вами моделью автомобиля?» Первый опрос выявил 30% неудовлетворенных, второй - 35%.

Поскольку существуют ошибки выборки и в первом и во втором случаях, то можно сделать следующий вывод. Для первого случая: около 30% опрошенных выразили неудовлетворенность купленной моделью автомобиля. Для второго случая около 35% опрошенных выразили не­удовлетворенность купленной моделью автомобиля. Какой же общий вывод можно сделать в данном случае? Как избавиться от термина «около»? Для этого введем показатель ошибки: 30% ± х% и 35% ± у% и сравним х и у. Используя логический анализ, можно сделать вывод, что большая выборка содержит меньшую ошибку и что на ее основе можно сделать более правильные выводы о мнении всей совокупности потреби­телей. Видно, что решающим фактором для получения правильных выво­дов является размер выборки. Данный показатель присутствует во всех формулах, определяющих содержание различных методов статистиче­ского вывода.

При проведении маркетинговых исследований чаще всего исполь­зуются следующие методы статистического вывода: оценка параметров и проверка гипотез.

Оценка параметров генеральной совокупности представляет из себя процесс определения, исходя из данных о выборке, интервала, в котором находится один из параметров генеральной совокупности, например среднее значение. Для этого используют следующие статистические пока­затели: средние величины, среднюю квадратическую ошибку и желаемый уровень доверительности (обычно 95% или 99%).

Ниже пойдет разговор об их роли при проведении оценки пара­метров.

Средняя квадратическая ошибка является, как отмечалось выше, мерой вариации выборочного распределения при теоретическом предпо­ложении, что исследовалось множество независимых выборок одной и той же генеральной совокупности.

Она определяется по следующей формуле:

Где s x - средняя квадратическая ошибка выборочной средней;

s - среднее квадратическое отклонение от средней величины в вы­борке;

n - объем выборки.

Если используются процентные меры, выражающие альтернатив­ную изменчивость качественных признаков, то

где s - средняя квадратическая ошибка выборочной средней при использовании процентных мер;

р - процент респондентов в выборке, поддержавших первую альтернативу;

q = (100 - q) - процент респондентов в выборке, поддержавших

вторую альтернативу;

n - объем выборки.

Видно, что средняя ошибка выборки тем больше, чем больше ва­риация, и тем меньше, чем больше объем выборки.

Поскольку всегда существует выборочная ошибка, то необходимо оценить разброс значений изучаемого параметра генеральной совокупно­сти. Предположим, исследователь выбрал уровень доверительности, рав­ный 99%. Из свойств нормальной кривой распределения вытекает, что ему соответствует параметр Z = ± 2,58. Средняя для генеральной сово­купности в целом вычисляется по формуле

Если используются процентные меры, то

Это означает, что если вы хотите, чтобы при 99%-ном уровне до­верительности диапазон оценок включал истинную для генеральной со­вокупности оценку, то необходимо умножить среднюю квадратическую ошибку на 2,58 и добавить полученный результат к процентному значе­нию р (верхняя предельная оценка). Если же произвести вычитание дан­ного произведения, то найдем нижнюю предельную оценку.

Как эти формулы связаны со статистическим выводом?

Поскольку производится оценка параметра генеральной совокуп­ности, то здесь указывается диапазон, в который попадает истинное зна­чение параметра генеральной совокупности. С этой целью для выборки берутся статистическая мера центральной тенденции, величина диспер­сии и объем выборки. Далее делается предположение об уровне довери­тельности и рассчитывается диапазон разброса параметра для генераль­ной совокупности.

Например, для членов выборки (100 читателей какой-то газеты) было установлено, что среднее время чтения газеты составляет 45 минут при средней квадратической ошибке в 20 минут. При уровне доверитель­ности, равном 95%-ном, получим

При 99%-ном уровне доверительности получим

Видно, что доверительный интервал шире для 99% по сравнению с 95%-ным уровнем доверительности.

Если используются проценты и оказалось, что из выборки в 100 человек 50% опрошенных по утрам пьет кофе, то при уровне доверитель­ности в 99% получим следующий диапазон оценок:

Таким образом, логика статистического вывода направлена на по­лучение конечных заключений об изучаемом параметре генеральной со­вокупности на основе выборочного исследования, осуществленного по законам математической статистики. Если используется простое заклю­чение, не основанное на статистических измерениях, то конечные выво­ды носят субъективный характер и на основе одних и тех же фактов раз­ные специалисты могут сделать разные выводы.

При использовании статистического вывода используются форму­лы, носящие объективный характер, в основе которых лежат общепри­знанные статистические концепции. В результате конечные выводы но­сят намного более объективный характер.

В ряде случаев делаются суждения относительно какого-то пара­метра генеральной совокупности (величине средней, дисперсии, характе­ре распределения, форме и тесноте связи между переменными) исходя только из некоторых предположений, размышлений, интуиции, непол­ных знаний. Такие суждения называются гипотезами.

Статистической гипотезой называется предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на дан­ные выборки.

Подпроверкой гипотезы понимается статистическая процедура, применяемая для подтверждения или отклонения гипотезы, основанной на результатах выборочных исследований. Проверка гипотезы осуществляется на основе выявления согласованности эмпирических данных с гипотетическими. Если расхождение между сравниваемыми величинами не выходит за пределы случайных ошибок, гипотезу принимают. При этом не делается никаких заключений о правильности самой гипотезы, речь идет лишь о согласованности сравниваемых данных.

Проверка гипотезы проводится в пять этапов:

1. Делается некоторое предположение относительно какой-то ха­рактеристики генеральной совокупности, например о средней величине определенного параметра.

2. Формируется случайная выборка, проводится выборочное иссле­дование и определяются статистические показатели выборки.

3. Сравниваются гипотетическое и статистическое значения иссле­дуемой характеристики.

4. Определяется, соответствуют или нет результаты выборочного исследования принятой гипотезе.

5. Если результаты выборочного исследования не подтверждают ги­потезу, последняя пересматривается - она должна соответствовать дан­ным выборочного исследования.

Вследствие вариации результатов выборочных исследований не­возможно сделать абсолютно точный вывод о достоверности гипотезы, проводя простое арифметическое сравнение величин характеристик. По­этому статистическая проверка гипотезы включает использование: выбо­рочного значения характеристики, среднего квадратического отклонения, желательного уровня доверительности и гипотетитеского значения харак­теристики для генеральной совокупности в целом.

Для проверки гипотез о средних величинах применяется следую­щая формула:

Например, готовя рекламу учебной программы по подготовке тор­говых агентов в колледже, руководитель программы считал, что выпуск­ники программы получают в среднем 1750 долларов в месяц. Таким обра­зом, гипотетическая средняя для генеральной совокупности равна 1750 долларам. Для проверки данной гипотезы было проведено телефонное обследование торговых агентов разных фирм.

Выборка составила 100 человек, средняя для выборки равнялась 1800 долларам и среднее квадратическое отклонение составляло 350 дол­ларов. Возникает вопрос, является ли большой разница (50 долларов) между гипотетической зарплатой и ее средним значением для выборки. Проводим расчеты по формуле (4.2):

Видно, что средняя квадратическая ошибка средней величины бы­ла равна 35 долларам, а частное от деления 50 на 45 составляет 1,43 (нор­мированное отклонение), что меньше ±1,96 - величины, характеризую­щей уровень доверительности 95%. В данном случае выдвинутую гипотезу можно признать достоверной.

При использовании процентной меры испытание гипотезы осуще­ствляется следующим образом. Предположим, что, исходя из собствен­ного опыта, один из автолюбителей выдвинул гипотезу, согласно которой только 10% автолюбителей используют ремни безопасности. Однако на­циональные выборочные исследования 1000 автолюбителей показали, что 80% из них используют ремни безопасности. Расчеты в данном случае проводятся следующим образом:

где р - процент из выборочных исследований;

π H - процент из гипотезы;

s p - средняя квадратическая ошибка при расчетах в процентах.

Видно, что первоначальная гипотеза отличалась от найденных 80% на величину 55,3, умноженную на среднеквадратическую ошибку, т.е. не может быть признана достоверной.

В ряде случаев целесообразно использовать направленные гипоте­зы. Направленные гипотезы определяет направления возможных значе­ний какого-то параметра генеральной совокупности. Например, заработ­ная плата составляет больше 1750 долларов. В данном случае использует­ся только одна сторона кривой распределения, что находит отражение в применении знаков «+» и «-» в расчетных формулах.

Более детальную информацию по данной проблеме можно полу­чить из .

Здесь, правда, возникает вопрос. Если можно провести выбороч­ные исследования, то зачем выдвигать гипотезы? Обработка результатов выборочных исследований дает возможность получить средние величины и их статистические характеристики, не выдвигая никаких гипотез. По­этому проверка гипотез скорее применяется в случаях, когда невозможно или чрезвычайно трудоемко проводить полномасштабные исследования и когда требуется сравнивать результаты нескольких исследований (для разных групп респондентов или проведенных в разное время). Такого рода задачи, как правило, возникают в социальной статистике. Трудоем­кость статистико-социологических исследований приводит к тому, что почти все они строятся на несплошном учете. Поэтому проблема доказа­тельности выводов в социальной статистике стоит особенно остро.

Применяя процедуру проверки гипотез, следует помнить, что она может гарантировать результаты с определенной вероятностью лишь по «беспристрастным» выборкам, на основе объективных данных.

Анализ различий

Проверка существенности различий заключается в сопоставлении ответов на один и тот же вопрос, полученных для двух или более независимых групп респондентов. Кроме того, в ряде случаев представляет ин­терес сравнение ответов на два или более независимых вопросов для од­ной и той же выборки.

Примером первого случая может служить изучение вопроса: что предпочитают пить по утрам жители определенного региона: кофе или чай. Первоначально было опрошено на основе формирования случайной выборки 100 респондентов, 60% которых отдают предпочтение кофе; че­рез год исследование было повторено, и только 40% из 300 опрошенных человек высказалось за кофе. Как можно сопоставить результаты этих двух исследований? Прямым арифметическим путем сравнивать 40% и 60% нельзя из-за разных ошибок выборок. Хотя в случае больших разли­чий в цифрах, скажем, 20 и 80%, легче сделать вывод об изменении вку­сов в пользу кофе. Однако если есть уверенность, что эта большая разни­ца обусловлена прежде всего тем, что в первом случае использовалась очень малая выборка, то такой вывод может оказаться сомнительным. Таким образом, при проведении подобного сравнения в расчет необхо­димо принять два критических фактора: степень существенности разли­чий между величинами параметра для двух выборок и средние квадратические ошибки двух выборок, определяемые их объемами.

Для проверки, является ли существенной разница измеренных средних, используется нулевая гипотеза. Нулевая гипотеза предполагает, что две совокупности, сравниваемые по одному или нескольким призна­кам, не отличаются друг от друга. При этом предполагается, что действи­тельное различие сравниваемых величин равно нулю, а выявленное по данным отличие от нуля носит случайный характер , .

Для проверки существенности разницы между двумя измеренными средними (процентами) вначале проводится их сравнение, а затем полу­ченная разница переводится в значение среднеквадратических ошибок, и определяется, насколько далеко они отклоняются от гипотетического нулевого значения.

Как только определены среднеквадратические ошибки, становится из­вестной площадь под нормальной кривой распределения и появляется воз­можность сделать заключение о вероятности выполнения нулевой гипотезы.

Рассмотрим следующий пример. Попытаемся ответить на вопрос: «Есть ли разница в потреблении прохладительных напитков между де­вушками и юношами?». При опросе был задан вопрос относительно чис­ла банок прохладительных напитков, потребляемых в течение недели. Описательная статистика показала, что в среднем юноши потребляют 9, а девушки 7,5 банок прохладительных напитков. Средние квадратические отклонения, соответственно, составили 2 и 1,2. Объем выборок в обоих случаях составлял 100 человек. Проверка статистически значимой разни­цы в оценках осуществлялась следующим образом:

где x 1 и x 2 - средние для двух выборок;

s 1 и s 2 - средние квадратические отклонения для двух выборок;

n 1 и n 2 - объем соответственно первой и второй выборки.

Числитель данной формулы характеризует разницу средних. Кроме того, необходимо учесть различие формы двух кривых распределения. Это осуществляется в знаменателе формулы. Выборочное распределение теперь рассматривается как выборочное распределение разницы между средними (процентными мерами). Если нулевая гипотеза справедлива, то распределение разницы является нормальной кривой со средней, равной нулю, и средней квадратической ошибкой, равной 1.

Видно, что величина 6,43 существенно превышает значение ±1,96 (95%-ный уровень доверительности) и ±2,58 (99%-ный уровень довери­тельности). Это означает, что нулевая гипотеза не является истинной.

На рис. 4.6 приводятся кривые распределения для этих двух срав­ниваемых выборок и средняя квадратическая ошибка кривой разницы. Средняя квадратическая ошибка средней кривой разницы равна 0. Вслед­ствие большого значения среднеквадратических ошибок вероятность справедливости нулевой гипотезы об отсутствии разницы между двумя средними меньше 0,001.